Training Big Random Forests with Little Resources

نویسندگان

  • Fabian Gieseke
  • Christian Igel
چکیده

Without access to large compute clusters, building random forests on large datasets is still a challenging problem. This is, in particular, the case if fully-grown trees are desired. We propose a simple yet effective framework that allows to efficiently construct ensembles of huge trees for hundreds of millions or even billions of training instances using a cheap desktop computer with commodity hardware. The basic idea is to consider a multi-level construction scheme, which builds top trees for small random subsets of the available data and which subsequently distributes all training instances to the top trees’ leaves for further processing. While being conceptually simple, the overall efficiency crucially depends on the particular implementation of the different phases. The practical merits of our approach are demonstrated using dense datasets with hundreds of millions of training instances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Forests for Big Data

Big Data is one of the major challenges of statistical science and has numerous consequences from algorithmic and theoretical viewpoints. Big Data always involve massive data but they also often include data streams and data heterogeneity. Recently some statistical methods have been adapted to process Big Data, like linear regression models, clustering methods and bootstrapping schemes. Based o...

متن کامل

Roost selection by Big Brown Bats in Forests of Arkansas: Importance of Pine Snags and Open Forest Habitats to Males

Although Eptesicus fuscus (Big Brown Bat) has been widely studied, information on tree-roosting in forests by males is rare, and little information is available on tree roosting in the southeastern United States. Our objectives were to characterize diurnal summer roosts, primarily for male Big Brown Bats, and to determine relationships between forest structure and roost selection. We quantifi e...

متن کامل

Exploratory Data Analysis using Random Forests

Although the rise of "big data" has made machine learning algorithms more visible and relevant for social scientists, they are still widely considered to be "black box" models that are not well suited for substantive research: only prediction. We argue that this need not be the case, and present one method, Random Forests, with an emphasis on its practical application for exploratory analysis a...

متن کامل

Random forests algorithm in podiform chromite prospectivity mapping in Dolatabad area, SE Iran

The Dolatabad area located in SE Iran is a well-endowed terrain owning several chromite mineralized zones. These chromite ore bodies are all hosted in a colored mélange complex zone comprising harzburgite, dunite, and pyroxenite. These deposits are irregular in shape, and are distributed as small lenses along colored mélange zones. The area has a great potential for discovering further chromite...

متن کامل

Mondrian Forests: Efficient Online Random Forests

Ensembles of randomized decision trees, usually referred to as random forests, are widely used for classification and regression tasks in machine learning and statistics. Random forests achieve competitive predictive performance and are computationally efficient to train and test, making them excellent candidates for real-world prediction tasks. The most popular random forest variants (such as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.06394  شماره 

صفحات  -

تاریخ انتشار 2018